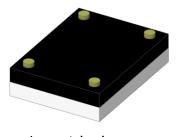


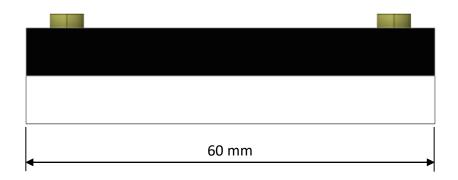
Introduction

- **Task description:** Evaluate the maximum temperature of assembly parts when in use.
- > **Scope:** Evaluate the integrity of demo sensor parts and the chip on PCB.
- Requestor: TIE M+ Organizing Committee
- > Inputs:
 - demo. stp
 - datasheet.pdf


Demo

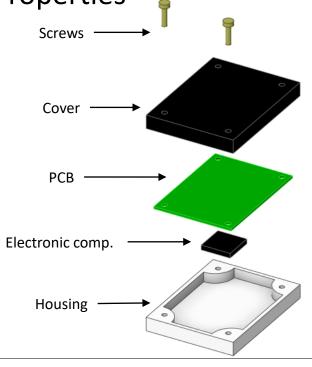
Agenda


- Inputs MD (overall dimensions, geometry and materials)
- 2 Inputs HW Power estimation and Layout design
- **3** Boundary conditions
- 4 Results Values and Graphic with temperature limits
- 5 Conclusions



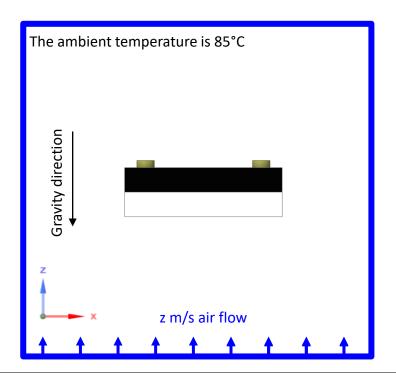
Inputs: Assembly Dimensions

Isometric view



Inputs: Material Assignment and Thermal Properties

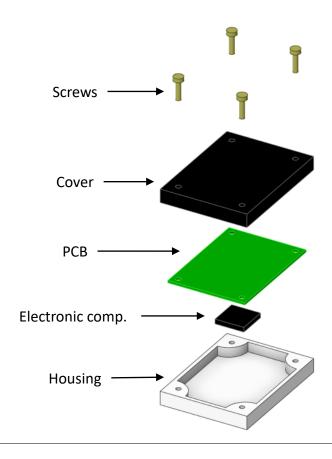
No.	Part name	Solid material	Surface material	Thermal conductivity [W/mK]	Power [W]
1.	Cover	Plastic	black	0.2	-
2.	Housing	Al Die Cast 99.5	natural	100	-
3.	РСВ	FR4	shellac	50 50 0.7	-
4.	Screws	Steel	natural	15	-
5.	Electronic comp.	Mold	black	8	2



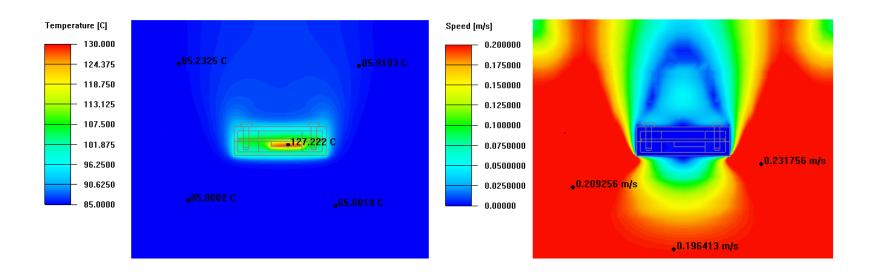
Notes:

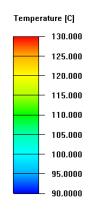
The surface is relevant from the thermal point of view for radiation heat transfer for all material types

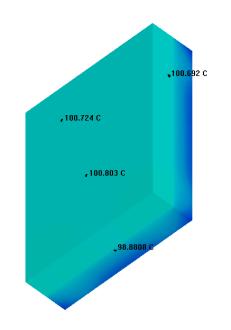
Boundary conditions

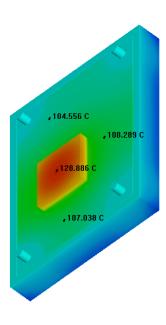


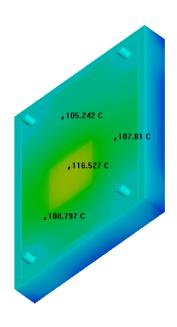
Summary report


No.	Part Name	Power [W]	Temperature limit [°C]	Maximum temperature [°C]
1.	Housing	1	-	100.2
2.	Cover	-	-	91.9
3.	PCB	-	-	116.9
4.	Electronic comp.	2	125	128.9




Temperature and velocity gradient – section view





Temperature on demo

Conclusions

- In the thermal analysis at 85°C, axis Z = 0.2 m/s air flow it can observed that:
 - > The electronic component temperature is above the temperature limit.
 - > Solution proposal: add thermal interface material for better heat dissipation.

! Please have in mind that the simulations are based on estimated input values! Please also consider that the model is simplified. So, please do not rely on absolute values.

Appendix

- The contest subject will include:
 - CAD in *.step format.
 - All required thermal constraints and parameters (if needed, with values).
 - All other required material/assembly properties.
 - Power Point Template for final report.
- Contestants are expected to:
 - Perform requested analyses in accordance with the provided data.
 - Answer FEM / FEA related questions on materials, mechanics and/or analysis.
 - > Report results by respecting the template and demo presentation, properly scale legends and drawing own conclusions.
 - Propose solutions / improvements where necessary.

Important dates & places

All the related information about the registration, contest guidelines & rules, bibliography, schedule, etc. will be found at the following address:

- > TIE-M plus Thermal eecamp
- Preliminary schedule and important dates:
 - Demo subject release: WK102023
 - Contest subject requirements release (pdf only): 6 April 2023
 - > CAD model release (needed to solve the requirements): 10 April 2023
 - > Final report to be uploaded by the contestants on the platform: 23 April 2023
 - > Announce the finalists (contestants who will present on 9 May, live): 28 April 2023
 - > Final presentation and debates with the Technical Committee: 9 May 203

Note: except for May 9, the other dates may suffer +1-2 days delay.

Registration date:

6-09 April 2023

Thank you for your attention!

