University POLITEHNICA of Bucharest

Faculty of Industrial Engineering & Robotics

Study programme: Industrial Engineering

Form of study: Bachelor

COURSE SPECIFICATION

Course title	General Physiscs	Semester	2
Course code	UPB.06.F.02.O.003	ECTS	5

Course structure	Lecture	Seminar	Laboratory	Project	Total hours
No. of hours/ week	2		2		4
No. of hours/ semester	28		28		56

Lecturer	Lecture	Sem	Labor	Project
		inar	atory	
Name, academi c degree	Cristian Toma (Assoc.Prof.)			Cristian Toma (Assoc. Prof.)
Contact (E-mail, location)	cristian.toma@physics.pub.ro			cristian.toma@Physics.pub.ro

Course description (max: 200 words) Object of physics. Fundamental interactions. State laws, process laws, models and approximations, axioms; basic interactions; international system of units (basic units, derived units) Thermodynamics postulates. Thermodynamic principles. Applications of thermodynamics principles to the study of ideal and real gases. Characteristic functions (enthalpy, free energy, free enthalpy). Statistical mechanics concepts. Statistical distributions. Kinetic-molecular theory. MaxwellBoltzmann distribution. Statistical interpretation of entropy. Fluctuations. Electrostatic field; fundamental notions. Electrical current: conductors, isolators, semiconductors; continuity equation. Laws of the electromagnetic field (Maxwell's equations). Electric and magnetic fields energy Propagation of Electromagnetic waves in vacuum; reflection and refraction of electromagnetic waves in dielectric media.

Seminar description (max: 200 words)

Laboratory description (max. 200 words) Statistical methods for experimental data; Determination of refractive index by Chaulnes method Study of light dispersion - prism spectroscope; Light interference - Young device Study of Fresnel diffraction; Diffraction grating Hall effect; Photoelectric effect Temperature dependence of semiconductor electrical conductivity; Curie law of magnetization

Project decsription (max. 200 words)

Assessment methods	Percentage of the final	Minimal requirements for
	grade	award of credits
Written exam	40%	final evaluation 40% (for
		mark 5 some basic
		applications should be
		solved, for mark 10 the
		selection of an adequate set
		of equations for a new
		environment is required).
Written paper	20%	for mark 5 some basic
		applications should be
		solved, for mark 10 the
		selection of an adequate set
		of equations for a new
		environment is required
Homework	10%	for mark 5 some basic
		applications basic aspects
		should be presented, for
		mark 10 the advantages of
		certain modelling methods
-		should be presented
Laboratory	30%	laboratory attendance and
		correct determination of
		required physical quantities
		70%, understanding of
		causal aspects 30% (for
		mark 5 the basic set of
		measurements should be
		performed and the
		experimental data should be
		analyzed by statistics/
		graphics methods, for mark
		10 the causal aspects should
		be understand)

References		
1.	R. Feynman, Modern Physics (Vol.1-3)	
2.	Berkeley Physics (Vol. 1-5)	

Prerequisites	Co-requisites (courses to be taken in parallel as a condition for enrolment)
Calculus	

Additional relevant information:

Date: 15 May 2022